Simplifying Roots and Cube Roots

 Make sure you have submitted the homework from schoolnet over the weekend.

Passcode: FBFRIWEEK2

Square Root: A number that you can multiply by itself to get the number under the radical

Principal square root: the positive root

Radical Symbol

Radicand: The expression under the radical symbol.

Perfect Square: The square of an integer.

Ex. 6^2 = 36 (36 is a perfect sqaure)

Squares and Square Roots

Example 1: $7^2 = (\underline{\ \ \ })(\underline{\ \ \ \ }) = 49$, so 7 is a square root of 49.

Example 2: $(-4)^2 = (-4)(-4) = 16$

Squares and Square Roots are INVERSE OPERATIONS!

1)
$$11^2 = 121$$
, so $\sqrt{121} = \frac{1}{121}$.

2)
$$6^2 = \frac{36}{4}$$
, so $\sqrt{36} = \frac{6}{4}$.

3)
$$10^2 = 100$$
, so 10 is a square root of 200 .

4)
$$4^2 = 16$$
, so $\frac{4}{16}$ is a square root of $\frac{16}{16}$.

5)
$$9^2 = 81$$
, so $\frac{9}{1}$ is a square root of $\frac{8}{1}$.

6)
$$(-3)^2 = \frac{9}{9}$$
, so $\sqrt{9} = -3$.

Simplifying Square Root Expressions

6)
$$\sqrt{36} = \sqrt{6.6} = 6$$

7)
$$\sqrt{100} = \sqrt{10 \cdot 10} = 10$$

8)
$$\sqrt{25} = \sqrt{5.5} = 5$$

9)
$$\sqrt{4} = \sqrt{2 \cdot \lambda} = 2$$

10)
$$\sqrt{81} = \sqrt{9.9} = 9$$

11)
$$\sqrt{121} = \sqrt{||\cdot|||} = ||$$

12)
$$\frac{9}{16} = \frac{\cancel{9}}{\cancel{16}} = \frac{\cancel{3}}{\cancel{4}}$$

7)
$$\sqrt{100} = \frac{10.10}{100} = \frac{10}{100} = \frac{9}{100} =$$

9)
$$\sqrt{4} = \frac{\sqrt{2 \cdot 2}}{\sqrt{2 \cdot 2}} = 2$$
 14) $-\sqrt{49} = \sqrt{7 \cdot 7} = -7$

Cube Roots

Example 1: $3 \times 3 \times 3 = 27$, so the cube root of 27 is 3.

Example 2: $4 \times 4 \times 4 = 64$, so the cube root of 64 is 4.

1)
$$\sqrt{8} = \sqrt[3]{2 \cdot 2 \cdot 2} = 2$$

2)
$$\sqrt[3]{343} = \sqrt[3]{7 \cdot 7 \cdot 7} = 7$$

3)
$$\sqrt[3]{125} = \sqrt[3]{5.5.5} = 5$$

4)
$$(-2)^3 = -2 \cdot -2 \cdot -2 = -8$$

5)
$$-(3)^3 = -(3\cdot 3\cdot 3) = -27$$

Word Problems: DRAW A PICTURE

1) A contractor is tiling a <u>square patio</u> that has the area shown at the right. What is the approximate side length of the patio? Round to the nearest foot.

15 inches

$$A = S^{2}$$
 $65 = S^{2}$
 $765 = 7S^{2}$
 $8 = S$

2) A square picture has an area of 225 in². What is the side length of the picture?

$$A=5^{2}$$
 $225=5^{2}$
 $225=15^{2}$
 $15=5$

